Kim, S.*, Wang, C.*, et al. Deep transfer learning for Lens-free digital in-line holography (LDIH) images in the context of cellular analyses. Scientific Reports.

Abstract

Lens-free digital in-line holography (LDIH) is a promising microscopic tool that overcomes several drawbacks (e.g., limited field of view) of traditional lens-based microcopy. However, extensive computation is required to reconstruct object images from the complex diffraction patterns produced by LDIH. This limits LDIH utility for point-of-care applications, particularly in resource limited settings. We describe a deep transfer learning (DTL) based approach to process LDIH images in the context of cellular analyses. Specifically, we captured holograms of cells labeled with molecular-specific microbeads and trained neural networks to classify these holograms without reconstruction. Using raw holograms as input, the trained networks were able to classify individual cells according to the number of cell-bound microbeads. The DTL-based approach including a VGG19 pretrained network showed robust performance with experimental data. Combined with the developed DTL approach, LDIH could be realized as a low-cost, portable tool for point-of-care diagnostics.

Publication
In Scientific Reports
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Supplementary notes can be added here, including code, math, and images.

Chuangqi Wang
Chuangqi Wang
Postdoc Associate at Biological Engineering

My research interests include computational modeling for cell imaging, systems biology and immunology in infectious diseases.